
hr. .I. Hear .Ums Transfer. Vol. 36, No. I I, pp. 2861-2867, 1993 
Printed in Great Britain 

0017-9310/93 $6.00+0.00 
0 1993 Pergamon Press Ltd 

Formation of castings with complex geometry. 
Thermomechanical effects, growth and 

influence of the air gap 
J. R. POPOV and I. H. KATZAROV 

Institute for Metal Science and Technology, Bulgarian Academy of Science, Chapaev 53, 
1574 Sofia, Bulgaria 

(Received 13 October 1992) 

Abstract-In previous works we have proposed a method for mathematical modelling of the processes of 
heat and mass transfer in castings, which includes the construction of a boundary fitted coordinate system 
in a Riemannian coordinate space. Within this approach we obtain the deformations, stresses and strains 
in the casting-mould system within a linear thermoelastic model. The equations for the stresses and 
deformations are derived from the corresponding laws of conservation in the coordinate space. Secondly, 
we consider the problem of heat transfer between the casting and the mould, while the boundary conditions 
change during the crystallization and formation of the crust due to the thermomechanical interaction there. 
We describe the evolution of the air gap and consider its influence on the process of crystallization. Some 
consequences from this model, which may allow a more subtle description of the casting formation, like 

the segregation behaviour in the two-phase region, are also discussed. 

INTRODUCTION 

A PRINCIPAL difficulty in the mathematical modelling 
of casting formation is the simultaneous treatment of 
hydrodynamic, thermoelastic, crystallization pro- 
cesses in castings with complex shapes. The problem 
becomes even more complicated when the shape is not 
stationary, e.g. when the solidification begins during 
the filling of the mould. 

In refs. [l, 21 we proposed a method for treating 
such problems-they are written and numerically 
solved in a Riemannian coordinate space, obtained 
through a metric mapping from the space of the real 
process. The mapping is constructed in such a way, 
that: (1) a boundary fitted coordinate system is ob- 
tained and (2) under certain conditions the hydro- 
dynamic equations, describing a laminar Ming of the 
mould, can be factorized over a family of coordinate 
surfaces 3 [l, 31. In this coordinate system various 
problems of casting formation could be 
treated simultaneously-in refs. [2, 31 we demon- 
strated some results from hydrodynamics, cooling 

and crystallization of castings, including the case 
with nonstationary geometry. In addition, the co- 
ordinate system is generated by algebraic methods, 
which makes more feasible the problem of its updating 
in cases with non-stationary metrics. (A review of the 
different methods for generation of boundary fitted 
coordinate systems can be found in ref. [4].) 

The essential steps in the construction of the metric 
are shown in Fig. 1. The coordinate system consists of 
a congruence of surfaces 3 with a metric on them, and 
a transverse vector field, parametrized by the variable 
x3, 0 < x3 < 1. The two metric forms on S’, gnb(t, x’, 
x2) and boh(f, x’, x2), are obtained as : 

gd4x’,x*) = (ra,rb) 

hzh(LX’>X2) = -@,,FJ 

where r, are vectors in S ‘, tangent to the coordinate 
curves Y : roe = aR/iW, where R is the vector from a 
concurrent coordinate system K,, to a point Q in S’ ; 
np is the unit normal vector at the same point Q, 
and the scalar product ( , ) is defined by the external 

5jg$2!b2: iF 
9 gab-2x3h bob +(x3 h)’ bacb; 

‘I 

FIG. 1. Stages of the construction of the metric mapping to the coordinate space R. 
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NOMENCLATURE 

u, b, . indexes, running over 1, 2 
C heat capacity coefficient 

a, j’=f:, = aflax! partial derivative along s’ 
V,F = F,, covariant derivatives along x’ 
F density of the external volume force 
G”(t, Y’, x’. .y3) components of the metric 

tensor 
G(t, .Y’, .Y’, x’) determinant of the metric 

tensor 

gcr*(f, \.I. .u”) components of the metric on 
the basic surface S ’ 

h( t, Y ‘, x’) transverse distance along n 
i. j, indexes. running over 1, 2. 3 
I, latent heat of crystallization 

n unit vector field, normal to S’ 

4 heat flux vector, q, = - tiV, T 

S’ one of the boundaries. chosen as a basic 
surface 

s coordinate surfaces 
t time parameter 

T temperature field 

T,, external temperature 
7, temperature of the liquid phase 
6 T T- T,, 
AT temperature interval of crystallization 
t”(t. u) stress tensor 
(/ density of the internal energy 
li velocity of a volume element. 

Greek symbols 

cc(t) heat transfer coefficient 

%I initial value of a(t) 

P thermal expansion coefficient 

r:, affine connection coefficients 
U”(t. r) velocity of deformation tensor 
K heat conductivity coefficient of metal 

% heat conductivity coefficient of air 

r.. /1 Lam&‘s coefficients 

0 specific density 
(‘,, volume ratio of solid phase. 

euclidean metric in K,. The components of the metric 
tensor are obtained in ref. [l] : 

G,h(t..x’,.x’,.Y7) = gy,-2x3izb,,, 

+(.U’h)“[b,,,bb+(V,Y,,)(V. rh)l 

G,,(t.s’,x’,.~‘) = -.u3h(VIt, r,,)/G:,,’ 

G3J(t.X’. x’) = h’. (1) 

The family of surfaces 9 and the vector field II. 
normal to S’, with geometry defined by (1). form a 
boundary fitted coordinate system. The equations of 
heat and mass transfer in metric (1) should be derived 
in a covariant way in order to account for the effects 
of boundary curvature and nonstationarity. We obtain 
them from the laws of conservation of mass, momen- 
tum and energy, defined in the coordinate space [I]. 
The corresponding equations are : 

(a) mass: 

(l/JG)?l(,/Gp)+V*(pV) = 0 

(b) momentum : 

(2) 

p(Vf,+V”V1V’+2P;,Vh)-Vkt’k=pF (3) 

(c) energy : 

p(U,,+Ua,lnG+V’U.,) = t$‘-V,q’fpVhF,. (4) 

THE THERMOELASTIC MODEL 

We shall use a linear thermoelastic model. defined 
by the stress tensor : 

t’” = A(T)G’h’GT+B(T)(V*<)G’k+C(T)@r~*+Vk<r). 

The coefficients A. B and C are obtained on the 

assumption of adiabatic initial conditions [5] : 

A =Afl/(l+ZA); B=i-ZA’!‘(I+ZA); C=p 

where Z = T,$‘/c; A = il+213p. 
With the use of the expression G”T:i+GG”iT;, = 

- Gt$. the stress tensor is written down in partial 
derivatives : 

t’” = AG”‘6T+BG”(tj,+(lnJG),<‘) 

+C(G”~:+GA’~~,-G~:;‘). (5) 

In the case, when the inertia and convective terms can 
be neglected. equation (3) is presented in the form : 

pF’+2pT:,g = Vkfi’ = AG“‘Vhd7 

+(B+C)G”‘VkV,;‘+CA<‘+CR;<” (6) 

where R,, is the curvature tensor of the surface 3. 
Let us consider a region with axial symmetry and 

designate Y’ = 4, .y2 = ‘7, s1 = .Y. If 4. r, : are the 
variables of an orthogonal cylindrical coordinate 
system and r = r(z) is a coordinate line in S’. 
which in fuct is the distance from a certain point 
of S’ to the symmetry axis, and B(rj = i,r. then 
drl = ( I + R’) lr7 dz. The components of the mcLric arc 
derived from ( 1) : 

G,, = [r+.dt/(l+B2)“‘]1 

c ;:: = [l -.uhS,B/(l +B’)]‘+(.xd,h)” 

G,, = iI1 ; Gzl = .xhi$. (7) 

When equations (7) are substiluted into (6), the 
thermoelasticity equations in terms of the dis- 
placement ;’ are represented in the specific metric and 
coordinate system. With regard to the symmetry of 



Formation of castings with complex geometry 2863 

the problem in x’ = 4, we obtain for the terms V/j: 

VJ” = (B+2C)G225,~,+(B+3C)G23~,~3 

+ CG33<,333 + (Bf C)G**5:‘3, 

+ [Cl JG(G22 J% + (Gz3 J% 

+(B+-C)G22(ln,/G),,+2C(G221? 

+G23r2)lr,~+[C/JG(G32 JG>,z 

+(G33 JG),3+(B+C)Gz3 (In JG),z 

+2C(G33r:2+G23r~2,]r,: 

+[(B+C)G” (InJG),, 

+2C(G**r*+G*3rz)]~,3J 

+ [(B+ C)G23 (In JG),3 

+2C(G33r:3+G23r:3)l<,33 

+[(B+C)G22 (In JG),,,+Gz3 (In JG),23 

+ CGi4Y~,,]52 + [(B+ C)G** (In JG).,, 

+GZ3 (lnJG),33+CG”T~,.~]~3 

+A(G2*~,,+Gz3~,3) (8a) 

Viti3 = (B+2C)G22C;,z~2+(B+3C)Gz3~,;3 

+CG335,$3+(B+C)G225,332 

+[C/JW” J%+(G23 JCL 

+ (B+ C)G2* (ln,/G)., +2C(G2*r& 

+G23~2)15,Ti + [Cl JW32,/G),z 

+(G33JG),3+(B+C)G23 (In JG>,2 

+2C(G33r:2+G23r:,)]5,33 

+ [(B+C)G*’ (ln,/G),, 

+2C(G2*r:3+Gz3r2)]5,~ 

+ [(B+ C)GZ3 (In JG),3 

+2C(G33r:3+G23r:3)]5,33 

+](B+C)G2* (ln JGj.22 

+G23 (InJG),,, +CG”I$.,]<* 

+ ](B+ C)G22 (ln JG),23 

+G~~ (ln JG),,, -t- CGijr;,,]t3 

+A(G32T,2+G33Z-3). (8b) 

The metric coefficients and the terms, included in 
the figure brackets in equation (8) are derived only at 
the beginning of the calculations or when the metric 
is updated. For that reason equation (8) is of the same 
numerical difficulty as the problems, conventionally 
treated in a Cartesian coordinate system. The differ- 
ence between the two coordinate systems will come in 
the way in which the boundary conditions are defined. 

The initial conditions, imposed on the unknown 

functions c’(n, x) and t3(n, x), depend on the way 
the casting is formed. If the mould is filled with molten 
metal with temperature T, and pressure p0 at the 
beginning, only the isotropic part of the stress tensor 
(5) differs from zero and the initial values are : 

5Yt = 0) = (PoPBJG) s JGdrl 

t3(t = 0) = (pJ2BJG) JGdx. (9) 

When the pressure p in the liquid phase does not 
change (because of a permanent feeding up), 
expressions (9) will hold in the melt throughout the 
process of cooling and crystallization. A different pat- 
tern of casting formation is realized, when the molten 
metal is enclosed within a solid crust and the feeding 
is ceased. Then the pressure changes during the pro- 
cess-in the case considered here it rises initially, and 
afterwards, due to the thermal contraction, it drops 
sharply. In such regions defects like pores and cracks 
will appear. The evolution of the isothropic part of 
the stress tensor in this case is shown in Fig. 6. 

The boundary conditions for equation (6) vary 
during the process. The vector N, normal to 3, 
Fig. 1, can be obtained from (7), [2] : 

N = on-(1-&)“*r,,; CJ = (G**G&I’*. (10) 

The components of the normal stress on a surface 3 
will be : 

Pi = t$N' = (AiST+B({f,+ (lnJG),,c’))N’ 

+C(G”G,,5f,+r:,+GYGj,5’)N*. (11) 

The scalar P = P'N, measures the normal stress on 
the walls of the form Sk. Initially it equals the pressure 
p,,, but after a crust is formed, it diminishes because 
of the shrinkage. While P > 0, the boundary con- 
ditions are rfs = 0. When P becomes zero, the bound- 
ary conditions are determined from the expression 
P = 0, which links the magnitudes and the derivatives 
of the displacement at the boundary according to (11). 
The air gap, which appears, is determined as the sum 
of the boundary displacements of the casting and 
mould : 

act, 4 = (5’(4 4, NJ, + (t-(4 d, w,. 

In this case the heat transfer between the mould and 
the casting will change significantly : 

a(t, 4 = wc,/(fc, +ad(t, z)> (12) 

where c(~ is the heat transfer coefficient at the begin- 
ning of the process, when the contact between the 
boundary surfaces is fast. The dependence of a,, on 
the value of the pressure P while & = 0 will not be 
accounted here. 

The heat problem is described in ref. [2]. It is solved 
in two regions, with solid and molten metal, where 
the equation is : 

p(CfLa,~,~)a,T = V-KVT 
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This problem is treated in the same coordinate system. 
After the substitution of the metric components from 
(7) we obtain : 

cp?,T= [“(G2’T:,+GIjT?,+2G??T,z) 

+G2’T,K~+~;~7~,,ti,~+G’~(~,1K,2+TIli,;) ,. .- 

+K((JGG”),~T~+(JGG~~) 1T,z 

+(~‘GG”).~T.,+(:GG “).,T.,)]/JG. (13) 

The boundary conditions of II and III kind follow 
from i,,T= N*VT: 

ti(G33)“281q, = ~(t)(T,-7;,)+ti(C~?)‘r2~2ii’2T,, 

(14) 

where N is obtained from equation (10) and a(t) from 
(I 2). On the boundary between mould and casting T, 
is respectively the surface temperature of casting and 
mould. 

1 (a) 

20 

The crystallization is described by the method ol 
equivalent heat capacity C,, = c + L? I co,. A simple 
equilibrium model for o, is used : 

C’, = c,-~ZI,hTiAT’ T,-AT< T< 7; 

C’,. = C’ T> 7, or T< T,-AT. 

NUMERICAL RESULTS AND DISCUSSION 

The system (6), written in metric (7), is solved 
jointly with the problem for cooling and crystal- 
lization (13) with initial and boundary conditions. 
settled above. The interaction between the heat and 
the mechanical problems takes place through the 
boundary conditions: while the normal stress. by 
which the casting acts on the walls of the mould is 
positive, &, = 0. and the coefficient of heat transfer is 
a,: when a gap appears, I& 1 > 0, and the heat transfer 

f 
(b) 

t = 0: 0:30.0 

T 1 deg 3 

650 ml 

625 

600 

500 m 

450 m 

190 
. . . . . . 

160 fZff 

= 
130 s 

85 

d 

5 10 10 

r 1 cm I r 1 cm I 

FIG. 2. Formation of a cylindrical casting with a permanent feed-up. (a) The influence of the air gap is 
accounted for. (b) The air gap is not accounted for. The surfaces of crystallization and several isothermic 

curves at 30 s are shown. The cooling rate a, at I = 0 is 5000 W me2 grad-‘. 
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Table 1. Parameter values 

1088 J kg-’ grad-’ 
4x 1O’J kg-’ 
660°C 
5°C 
1500 W m-* grad.-’ 
/$,+-BIT; ho = 0.7 x IO-“; fir = lo-* grad-’ 
0.49 x IO7 N m-* 
po+p,T+fizTZ; p0 = 0.25x lo7 N m-Z; 
9, = 0.246 x IO4 N me2 grad-’ ; p2 = 2 N mm2 grad-* 
200 W m- ’ grad- ’ 
0.04 W m-’ grad“’ 
2700 kg mm3 

changes according to (12). Calculations were carried 
out for a conventional metal with parleyers, listed 

in Table 1. 
The problem was solved numerically for castings 

with different shapes. In Fig. 2 we present results 

from the solution for axially symmetric castings with a 
permanent feed up with a molten metal. A solution 
for the air gap is obtained, and its influence on the 
crystallization is shown. The evolution of the heat 
transfer coefficient a(t) is shown on Fig. 3. As seen 
from (12), the air gap s(t) = ~(a-’ --cc& ‘). The sur- 
face temperature at Fig. 4 sharply rises after the 
appearance of the air gap, because the heat transfer 
coefficient diminishes according to (12), and the 
rea~angement of the temperature gradient field inside 
the casting lags behind. Figure 5 illustrates the mag- 
nitude of the displacements I{ 1. 

In the next figure we demonstrate another solution 
for the same co~guration, this time without a feed 
up of the two-phase region. This is shown in Fig. 6, 
where the evolution of the isotropic part of the stress 
tensor l/3& = AGTf(B+2/3C)~f,+B(ln,/g),,~’ is 
presented for an element with x = 0.6. After the for- 
mation of a solid core the molten metal remains 

FIG. 3. Evolution of the coefficient of heat transfer a(& t). According to equation (12) the air gap 
s(t) = y&a-‘-a; ‘f is easily derived from here. 

z[cml 20-~ -20 t I sl 

FIG. 4. Surface temperature Trs of the casting. When the crystallization of the layers immediately below 
the surface is completed, T,, falls sharply. After the appearance of the air gap, the temperature on the 

surface may rise again, which is due to the r~~angement of the thermal fluxes inside the casting. 
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FIG. 5. Field of the deformations I<(r, ;)I 

FIG. 6. Evolution of the isotropic part of the stress tensor t,i for a layer from the casting with xi = 0.6. In 
this case the feeding is ceased and the pressure depends on the progress of the crystallization in outer layers 

of the casting. 
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enclosed, and the pressure there depends on the pro- 
gress of crystallization in the outer layers. Initially the 
pressure rises, because the outer layers are shrinking 
(p is considered to be constant during the phase tran- 
sition). An important aspect here is the possibility to 
judge the quality of the casting-when crystallization 
takes place in the considered volume, the pressure 
there falls to zero, and pores and hot cracks will be 
imminent-in addition, it provides the initial con- 
ditions which are needed to treat’such problems as 
segregation, pores, stress relaxation near T,. To 
describe these problems simultaneously with crys- 
tallization and deformation becomes feasible in this 
context. 

The considered problems constitute only a part of 
a whole complex of processes, which take place during 
the casting. Their modelling is important for the cor- 
rect description of the casting formation. The advan- 

tage of the described method is, that it treats uni- 
formly and simultaneously the different problems of 
heat and mass transfer in castings with complicated 
and even non-stationary shapes. 
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